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Data from historical epidemics provide a vital and sometimes under-used resource from
which to devise strategies for future control of disease. Previous methods for retrospective
analysis of epidemics, in which alternative interventions are compared, do not make full use
of the information; by using only partial information on the historical trajectory,
augmentation of control may lead to predictions of a paradoxical increase in disease. Here
we introduce a novel statistical approach that takes full account of the available information
in constructing the effect of alternative intervention strategies in historic epidemics. The key
to the method lies in identifying a suitable mapping between the historic and notional
outbreaks, under alternative control strategies. We do this by using the Sellke construction
as a latent process linking epidemics. We illustrate the application of the method with two
examples. First, using temporal data for the common human cold, we show the improvement
under the new method in the precision of predictions for different control strategies. Second,
we show the generality of the method for retrospective analysis of epidemics by applying it to
a spatially extended arboreal epidemic in which we demonstrate the relative effectiveness of
host culling strategies that differ in frequency and spatial extent. Some of the inferential and
philosophical issues that arise are discussed along with the scope of potential application of
the new method.

Keywords: Bayesian inference; citrus canker; common cold; epidemic control;
intervention strategies; stochastic epidemics
1. INTRODUCTION

During the outbreak of an epidemic, decisions are taken
on how to intervene in order to mitigate its impact
(Anderson et al. 2004). The time scale in which a decision
must be taken and the paucity of information on key
epidemiological parameters early in the epidemic make
the choice of intervention or control difficult (Ferguson
et al. 2001a,b). The decision is often controversial
(Cunningham et al. 2002; Kitching et al. 2006; Wingfield
et al. 2006), particularly so if the control strategy effected
involves pro-active culling of non-symptomatic animals
or crops or, for human diseases, travel restrictions.
Following the cessation of the outbreak, one question
that naturally arises is: was the right choice of control
made?To answer this, we need to determine what would
pplementary material is available at http://dx.doi.org/
008.0030 or via http://journals.royalsociety.org.
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have occurred had an alternative, mooted choice of
control been implemented. Moreover, we need to do this
while taking account of uncertainty in both the para-
meters governing the process and the underlying,
partially observed trajectory of the outbreak (definitions
of terminology used in the paper are provided in table 1).

With a little thought, it becomes apparent that the
question is ill-posed, since there are at least two
interpretations, as follows. Was the best choice made
given what was known at the time of the decision? Was
thebest choicemade in the lightofwhat is knownnow?We
call these prospective and retrospective questions of the
appropriateness of the choice of control, respectively. The
prospective situation is the common one that confronts
epidemiologists and decision makers in an emerging
epidemic. Since there is little information to informchoices
made at an early stage, though, the prospective question
amounts merely to querying the professional competence
of the person or persons who made the decision.

It is the retrospective appropriateness that is of most
general interest when looking back at an historic
epidemic. The retrospective question addresses the
J. R. Soc. Interface (2008) 5, 1203–1213
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Table 1. Terminology used in the paper.

an intervention strategy is any action that may change the
way an epidemic invades a population. Non-interven-
tion is also considered to be an intervention strategy

the actual or historic epidemic is the one that did occur in a
given place and time under the actual or historic
intervention strategy

a mooted or alternative intervention strategy is one that
may differ from the actual intervention strategy (it may
also be the same)

a notional epidemic is one that did not occur but might
have occurred had a mooted intervention strategy been
effected rather than the actual one

parametric information encapsulates the uncertainty in
the parameters of a model. A single vector of parameter
values is capable of generating multiple epidemic
trajectories or realizations (though not all are equally
likely), of which only one occurs in one temporal and
spatial locality

trajectory information encapsulates the uncertainty in a
single epidemic trajectory. A single trajectory could
have been generated by multiple parameter values,
though again not all are equally likely. Note that this
information does not have to provide a complete
representation of the outbreak

a prospective analysis of the effect of a mooted intervention
strategy uses current parametric and trajectory-based
information to determine what the possible future
effects would be, and often is undertaken while the
outbreak is at an early stage

a retrospective analysis of the effect of a mooted
intervention strategy uses current parametric and
trajectory-based information to determine what the
possible past effects would have been, and might be
carried out once the outbreak has ceased

a semi-retrospective analysis of the effect of a mooted
intervention strategy uses up-to-date parametric infor-
mation and partial trajectory information to determine
what the possible past effects would have been in an
ensemble of realizations of alternative realities, which
have trajectories that, once the first change in the
intervention occurs, are independent of the historic
trajectory. Such an analysis also might be carried out
once the outbreak has ceased

in
fe

ct
io

n

actual epidemic (X )

notional epidemic (X′ )

time
mooted actual

actual control:
mooted control:

prospective: X

semi-retrospective:

retrospective:

X

X

Figure 1. Diagram representing the different approaches
described in the paper. In this simple scenario, the actual
intervention (control) r is implemented at time tactual, lasts
until the end of the outbreak and results in epidemic trajectory
X. The choice of r makes use of parametric (q) and trajectory-
based (X ) information until time tactual. After the outbreak is
over, an alternative mooted intervention r0 is considered
which would have been implemented at time tmooted. This
would have resulted in the notional trajectory X0, which has a
distribution reflecting our uncertainty in the parameters and
trajectory. In the semi-retrospective approach, all available
parametric information is used, but the only trajectory
information used is that occurring before the intervention. In
the (fully) retrospective approach described in this paper, all
available information (on X and q) is used.
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ultimate effectiveness of the actual and mooted actions
in the light of what has passed (cf. table 1). It is the
retrospective question, too, that interests those who
have been personally affected by an intervention. A
farmer whose entire herd or crop is culled will want to
know whether swifter implementation of control
measures might have saved the enterprise, not in a
long-run population of outbreaks, but in the specific,
actual outbreak in which the losses occurred.

In assessing the retrospective question, it is imperative
that full use is made of the information provided by the
historic epidemic, of which there are two types: para-
metric, i.e. information about the process, and trajectory
based, i.e. information encapsulated in the epidemic’s
trajectory (figure 1 for schematic). Until now, however, it
has seemed to many researchers that studying popu-
lations of outcomes independent from reality is the only
way to address notional controls. This semi-retrospective
approach was taken by Riley et al. (2003) for the SARS
epidemic of 2003 and by Keeling et al. (2001) for the
J. R. Soc. Interface (2008)
foot-and-mouth disease (FMD) outbreak in the UK in
2001. Riley et al. (2003) noted the difficulty in interpret-
ing the results, describing the notional epidemics of
SARS generated with parameters estimated from Hong
Kong cases as representing cities with ‘Hong Kong-like
characteristics’ rather thanHongKong per se. One of the
authors of the foot-and-mouth paper later pointed out a
paradox of the approach, namely that implementing
control measures more swiftly than happened in reality
leaves ‘a significant probability of a worse outcome than
was actually observed’ (Woolhouse 2003). The cause of
this paradox is illustrated by analogy to the following
example. Suppose that one mooted intervention during
the 2001 FMD epidemic in Great Britain (Ferguson et al.
2001a,b), in addition to the controls implemented in
reality, was to vaccinate all livestock on the Isle of Man
(itself unaffected by the epidemic despite its proximity to
the heavily affected areas of Dumfries, Galloway and
Cumbria). It is reasonable to believe that there would be
no effect of this alternative intervention strategy on the
actual outbreak. This should be reflected in predictions
that the notional epidemic be the same as the actual one.
Ignoring the information content of the observed
trajectory of the epidemic, however, leads to a distri-
bution of possible outcomes following the spurious
vaccination, some of which have greater and some less
disease than the true outbreak, and which is not
necessarily centred on the actual outcome. This paradox
and the awkwardness of interpretation can be rectified by
incorporating trajectory-based information in analyses to
compare alternative control strategies.

http://rsif.royalsocietypublishing.org/
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A heuristic, retrospective solution has been proposed
by Haydon et al. (2003) and applied to FMD. This
involves constructing an epidemic tree to summarize the
course of infection by linking each infected farm to the
donor that infected it.Contact tracingwas used to identify
some links, while other links were unknown and were
constructed using ad hoc data-driven rules, such as the
nearest potential donor, or a randomly selected farm from
the set of potential donors weighted by a function of
distance to the recipient. The notional effect of mooted
interventions, such as swifter implementation of the
national movement ban, could then be considered by
removing branches of the tree. The approach enabled
Haydon et al. (2003) to obtain estimates of disease levels
under mooted interventions. Haydon et al. (2003)
recognized these to be underestimates, reflecting an
inherent bias in their methods, which allows only a single
incoming branch to any recipient, so that when a mooted
intervention results in the removal of a branch, the
notionally non-infected host unit is considered safe from
further infection, regardless of the infective pressure
exerted upon it by other farms. Note that although the
approach of Haydon et al. (2003) does eliminate the
paradox of potential increase in disease levels under
greater control, this is partly due to the inherent
restriction that branches are capable of being removed
but not of being inserted.

The current paper formalizes the heuristic approach
of Haydon et al. (2003) by introducing and testing a
novel framework for evaluating mooted interventions on
historic outbreaks. The new method makes full use of all
information available in a statistically coherent fashion
that overcomes the bias of previous work and is
applicable to a very broad class of models. The frame-
work treats mooted interventions consistently regardless
of whether the difference between them and the actual
intervention be slight or major. Section 2 introduces the
background for the approach and the way it differs from
the standard method for prospective analysis. We follow
this by introducing the methodology that allows historic
and notional epidemics to be coupled. This is done by
matching the latent processes generating epidemics that
differ only through the effect of the intervention strategies
used. The new methodology is illustrated with two
examples—one simple, the other more complex—based
on historic data: the general SIR model applied to
common cold data and a spatio-temporal SI model
applied to data on a spatially extended arboreal disease.
In the latter, interventions take the form of physical
removal of symptomatic and, possibly, also asympto-
matic hosts. In the concluding discussion, we compare
the approach with previous attempts and discuss some
of the inferential issues that arise.
2. PRELIMINARIES: DISTINGUISHING
RETROSPECTIVE FROM PROSPECTIVE
APPROACH

The question of the prospective appropriateness of
differing control strategies is, in principle at least, easy
to answer using statistical decision theory (Berger
1993). We denote the unknown parameters by q, the
actual epidemic process by X, the original choice of
J. R. Soc. Interface (2008)
intervention by r and observed data by D(X ). The
utility function, characterizing the costs and benefits of
the intervention r, is denoted U(X, r). We also consider
a mooted alternative intervention r0 and the resulting
notional epidemic process X0; there are natural general-
izations to more than two alternatives. Throughout we
work within the Bayesian paradigm (Lee 2004) and use
p to denote both probability mass and density.

The best prospective choice of intervention (r or r 0)
given what is known at a time T1 during the outbreak is
the one maximizing the expected utility conditional on
this knowledge

EfUðXtOT1
; rÞjDðXt!T1

Þg

Z

ð
UðxtOT1

; rÞpðxtOT1
jDðXt!T1

ÞÞ dxtOT1
; ð2:1Þ

E U X 0
tOT1

; r0
� �

jD Xt!T1

� �� �

Z

ð
U x 0

tOT1
; r0

� �
p x 0

tOT1
jDðXt!T1

Þ
� �

dx 0
tOT1

: ð2:2Þ

Although the problem is easily posed, carrying out this
integration may be computationally challenging. One
approach utilizes Monte Carlo simulation—draw values
of q from pðqjDðXt!T1

ÞÞ, use these to generate samples
from pðXtOT1

jDðXt!T1
ÞÞ and pðX 0

tOT1
jDðXt!T1

ÞÞ, evalu-
ate utilities and take averages. The expected effect
of different strategies can then be compared.

It may initially appear that a similar approach can
be used retrospectively to find the best decision at time
T1 based on what we know at the present (time T2,
say), replacing DðXt!T1

Þ by DðXt!T2
Þ in the algorithm

above. This is inappropriate, though, if the distribution
of X 0

tOT1
is in any way dependent on XtOT1

, which will
be the case if both parametric and trajectory-based
information are to be fully utilized. We term this the
semi-retrospective approach, since it conditions on
some information but disregards other information.

An alternative approach is needed to make full use of
all information at our disposal. This requires that pairs
of epidemics be coupled so that the distribution of the
effect of one intervention conditional on that of another
can be determined.
3. COUPLING EPIDEMICS BY MATCHING
LATENT PROCESSES

Imagine for a moment that the ‘interventions’ are just
alternative ways of observing the system for the purposes
of collecting data for inference.Weassume that collecting
the data has no bearing on the epidemic outcome (no
pathogens are inadvertently spread by the collectors, for
example) so that the actual epidemic process X is
maintained regardless of whether r or r0 is carried out,
although D(X ) and D 0(X ) differ. This scenario holds
when we attempt to devise retrospectively optimal
designs of observation schemes (Cook et al. in press).
Then the distribution of D 0(X ) conditioned on D(X ) is

pðD 0ðXÞjDðXÞÞZ
ð
pðD 0ðXÞjxÞpðxjDðXÞÞ dx; ð3:1Þ

which may be sampled using Markov chain Monte Carlo
(MCMC) and data augmentation (Gibson & Renshaw

http://rsif.royalsocietypublishing.org/
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background

A B
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Figure 2. The difference between the Poisson and Sellke
constructions in terms of the conditional distribution of tB and
t 0B. In the observed epidemic, background sources infect host
A at time tA; B is then infected at time tB either by
background sources or by A. In the notional epidemic, A is
removed immediately after infection and so it is unable to
infect B. Under the Sellke construction, B is infected later
(green dot). Under the Poisson construction, B may be
infected at the same time as before (if it was infected by
background sources in the observed epidemic, orange dot);
alternatively its infection time follows a shifted exponential
distribution (orange line) if it was infected by A in the
observed epidemic.
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1998; O’Neill & Roberts 1999) or may be deterministic if
D 0(X ) is fully specified by D(X ).

By analogy, oneway to evaluate the effect of a notional
intervention strategy on an historic epidemic is to seek
the joint distribution of two epidemics X and X0 that
differ in some sense only through the effect of their
intervention strategies r and r0. The distribution of X0

conditioned on our knowledge of X then gives our best
prediction ofwhatwould have happened had the notional
intervention been chosen rather than the actual one.

The joint distribution p(X, X 0) cannot, however,
ever be validated empirically, since it is impossible to
observe both X and X 0, although both marginal
distributions can be found by repeated sampling. The
impossibility of observing the effects of two treatments
on the same sampling unit has long been noted (Rubin
1974) and has been called the fundamental problem of
causal inference (Holland 1986). Some assumption is
therefore necessary to circumvent the problem. Causal
inference underlies the approach of Haydon et al.
(2003), who assumed that inferred branches of their
epidemic tree that were not removed by a mooted
intervention would be invariant to that intervention,
and therefore would be maintained in the notional
outbreak. This is also the approach we take in this
paper, although our approach allows potential contacts
that did not cause infection in reality also to be
invariant to changes in the intervention strategy.

Suppose, therefore, that we can identify a latent or
underlying stochastic process Z whose sample path is
unaffected by the choice of intervention and which,
together with the intervention, determines the outcome
of the epidemic

X Z gðZ ; rÞ; ð3:2Þ

X 0 Z gðZ ; r0Þ: ð3:3Þ
It then follows that the marginal for the notional
outcome conditioned on the actual epidemic is

pðX 0jXÞZ
ð
Z
pðX 0jzÞpðzjXÞ dz; ð3:4Þ
J. R. Soc. Interface (2008)
whereZ is the space of Zs consistent withX andX 0. The
problem is that there are many different choices of Z,
and in general they give different results. In selecting a
Z process to match different interventions, we propose
the following desiderata:

(D1) Z should represent something we might
reasonably expect to be invariant to changes in r.
(D2) If r0Zr then Z should give X 0ZX.
(D3) If r 0 is ‘close’ to r, then so too should beX0 toX.
(D4) Since the value of Z is unknown in practice, we
should be able to evaluate in a straightforward way
its distribution conditional on the observed part of
X, perhaps numerically.

The most important of these is the first one, i.e. the
validity of the reasoning that the physical nature of
Z should be maintained for differing interventions.
3.1. Poisson construction

One common way of modelling an epidemic is as a
modified Poisson process. If hosts mix homogeneously
and contact sufficient for disease to spread occurs at a
constant rate b, say, between each pair of hosts, then the
occurrence of contacts in the population is a collection of
Poisson processes of rate b. Non-homogeneous mixing of
hosts may also be accounted for by allowing b to vary
with the distance (in space or social space) between hosts
(as in the example in §5), for example. Infection and
hence disease is assumed to spread across a contact if at
that time one host is infectious and the other susceptible.
Interventions may take the form of actively removing
hosts before they spread infection, or reducing the
number of contacts. Under the Poisson construction, Z
is the infinite set of contact times and the hosts involved.
3.2. Sellke’s construction

The infinite nature of the Poisson Z process is computa-
tionally undesirable, so we seek an alternative that is
more manageable and yet functionally similar. We there-
fore consider a construction due to Sellke (1983), which is
an equivalent way of formulating standard stochastic
epidemic processes. (The approach is connected to the
idea of non-centred parameterizations (Papaspiliopoulos
et al. 2003), since there is a one-to-one relationship
between an individual host’s Sellke threshold and the
cumulative distribution function of the infection time of
that host.)

Sellke’s construction assigns to each individual j in
the population a threshold or resistance to infection
ZjwExp (1) that must be overcome before j becomes
infected. The threshold is overcome by the accumulation
of infective pressure—if the rate of infection of j from all
sources at time u is fj(u) (that may vary according to
host heterogeneity and the evolving contact structure,
cf. Cook et al. 2007), then the time tj at which j is
infected is the solution of

Ð tj
0 fjðuÞ duZZj . (When no

solutions exist because ZjO
ÐN
0 fjðuÞ du, then there is

insufficient infective pressure to infect j and the host
escapes infection.) In the general stochastic epidemic
model with homogeneous mixing of hosts, the rate of

http://rsif.royalsocietypublishing.org/
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Figure 3. (a–d ) The difference between the Poisson and Sellke constructions in terms of the retrospective joint distribution of the
number of infective and removed hosts at time 7 under the two interventions. (a) Retrospective: Poisson and (b) retrospective:
Sellke. Also shown is the joint distribution taking realizations under the two interventions to be independent after times tZ0 and 3,
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retrospective: independent post intervention. Marginal distributions are shown in the margins of the plots. These have the same
distribution regardless of the method used to generate them.
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infection of j at time t is

fjðtÞZ
X
i

b1fi2IðtÞg1fj 2SðtÞg; ð3:5Þ

where b is the rate of infection from one infectious host to
one susceptible host, 1fAgZ1 if A is true and 0
otherwise, and S(t) and I(t) are the sets of susceptible
and infective hosts at time t, respectively. Sellke (1983)
shows that this is equivalent to the standard formulation
of the infection process of the general stochastic epidemic
model, such as the Poisson process approach described
previously or Gillespie’s (1977) algorithm. Under the
Sellke construction, Z is the set of thresholds, with one
threshold per host.
3.3. Comparison of Poisson and Sellke
constructions

Denoting distributions under the Poisson construction
as pP and under the Sellke as pS, then although pPðXÞZ
pSðXÞ and pPðX 0ÞZpSðX 0Þ (i.e. the distribution of an
epidemicX is identical under the two approaches), it is not
generally true that pPðX ;X 0ÞZpSðX ;X 0Þ. This is
J. R. Soc. Interface (2008)
illustrated with a simple example (figure 2). Two hosts
(A and B) are infected by background sources at rate
b. Once one host is infected, it infects the other also at
rate b. Suppose that A is infected first. The two
interventions considered are r: do nothing, and r0: remove
the first host to become infected immediately upon its
infection. The distribution of the time A is infected is
tAwExp (b). Under r, ðtBK tAjtAÞwExp ð2bÞ and under
r0, ðtBK tAjtAÞwExp ðbÞ.

Now suppose that we have observed X completely
and thus know tA and tB. Under the Sellke construction,
there is a one-to-one mapping between the latent
process Z and infection times given the parameters,
and so the notional infection time for B takes a point
mass at t 0BZ tAC2ðtBK tAÞ. Under the Poisson con-
struction, however, B was infected by the background
source with probability 1/2, in which case its infection
is unaffected by the removal strategy and t 0BZ tB;
otherwise it was infected by A in reality and so its
notional distribution is thus ðt 0BK tBjtBÞwExp ðbÞ,
since there is no information on the next infectious
contact from the background source to B. The
difference is illustrated in figure 2.

http://rsif.royalsocietypublishing.org/
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In practice, it is justifiable to use the Sellke as an
approximation to the Poisson construction. Infection
times are not observed precisely in reality; instead they
are typically censored, recorded to the nearest day, for
example. In the presence of censoring, event times assume
a joint distribution conditional onwhat is observed (D(X )
rather than X ), and the two approaches give very similar
conditional distributions pðX 0jDðXÞÞ (not shown).

This similarity of behaviour is illustrated through
the following simulation example based upon the
general SIR epidemic (Bailey 1975). Motivated by the
case study in §4, consider a homogeneously mixing
population of size NZ262 with rate of infection per S–I
pair (as in equation (3.5)) bZ0.003 and rate of recovery
per infected individual gZ0.66. We start with 10
individuals infected at time 0. (The high initial number
of infectives is for convenience of representation and
does not affect the generality of the comparison.)

A total of 100 000 realizations of Z is generated for
both Sellke and Poisson constructions (see appendix A in
the electronic supplementary material). These are used
to obtain the distribution of the number of infective and
removed hosts at time tZ7 under the interventions r: do
nothing, and r0: halve b from time tZ3 onwards (which
we implement in the Poisson construction using Rényi’s
splitting theorem (Rényi 1964; Srivastava 1971) to
discard each contact with probability 1/2). These are
shown in figure 3, both jointly and marginally. Also
shown is the relationship taking the notional disease
trajectory to be independent of the true one after times
tZ0 and 3. For this case, the Sellke construction
provides an excellent approximation to the joint
distribution of the number of infectives I(7) and I 0(7)
generated under the Poisson construction, with the two
quantities strongly correlated. This provides prima facie
justification for using the more tractable Sellke con-
struction in practice. Additional simulations (not
shown) indicate that conditional on a complete realiz-
ation of the epidemic, the resulting notional trajectory
under Sellke matches the mean of the distribution of
Poisson trajectories closely. In contrast, the mean using
the semi-retrospective approach matches the Poisson
trajectories well only when a major intervention occurs
so that little information from the actual outbreak is
relevant in constructing the notional trajectory.
4. EXAMPLE: THE COMMON COLD ON TRISTAN
DA CUNHA

We compare the semi-retrospective approach with the
(fully) retrospective approach by applying both to
historic data on the common cold on the remote island
of Tristan da Cunha during an outbreak starting
January 1965 (Hammond & Tyrrell 1971; Shibli et al.
1971) and considering the effectiveness of two alterna-
tive interventions.

The general SIR stochastic epidemic model (Bailey
1975) is fitted to the daily numbers of removed individuals
(i.e. those whose symptoms have ceased and have moved
from the I to the R class) using standard data augmenta-
tion andMCMC integration techniques to obtain the joint
posterior distribution of parameters andunobserved event
times (e.g. Gibson & Renshaw 1998; O’Neill & Roberts
J. R. Soc. Interface (2008)
1999, and appendix B in the electronic supplementary
material). Themodel has infection as in equation (3.5), i.e.
infection occurs at rate b per S–I pair in the absence of
intervention.The control strategieswhose effectivenesswe
wish to investigate take the form of reductions to b 3 days
after the first removal, perhaps due to warnings issued by
the island’s physician to reduce contact with other
islanders. Letting bx be the rate after 3 days, the two
strategies we consider are r1: xZ0.5 and r2: xZ0.9.
Infected individuals recover, leaving I(t) and entering the
set of removed individuals, R(t), at rate g. The data are
fRðtÞZ jRðtÞj : tZ0;.; 19g, the population size of
NZ262 and the fact that no subsequent infections
occurred in the outbreak. The initial infection is assumed
toariseby someother, unmodelled, process.Flatpriors are
taken for b and g on the region [0, 100]2.

As part of the parameter estimation routine, the set
of Sellke thresholds is calculated and used to estimate
the distribution of the number of removals with time,
under the two control strategies of interest. Non-
infected hosts are given randomly generated thresholds,
conditional on being non-infected, making use of the
memoryless property of the exponential distribution.
Details of the implementation may be found in the
electronic supplementary material, appendix B.

Posterior medians and credible regions (Lee 2004)
are shown in figure 4b,d. This figure also shows
predictions using the semi-retrospective approach
(figure 4a,c), with infection trajectories diverging
from the actual one on day 3, when the intervention
strategy begins. The problems with the latter approach
are clear when one considers the predicted effect of a
small reduction to the rate of infection—paradoxically,
the expected amount of disease increases (figure 4a).
Under our fully retrospective approach, however, we
would instead predict a small decrease in the numbers
of infections (figure 4b). When the change is more
marked (xZ0.5, figure 4c,d ), the expected behaviour
under the two approaches is similar, but taking the
semi-retrospective approach inflates the variance
considerably relative to the fully retrospective
approach, yielding considerably poorer predictions.
5. EXAMPLE: CITRUS CANKER IN FLORIDA

Citrus canker is an economically important disease of
citrus trees caused by the bacterium Xanthomonas
axonopodis pv. citri (Graham et al. 2004). It was found
to have been reintroduced to Florida, USA, in 1995,
following a successful eradication programme from
1986 to 1992. From October 1997 to July 1999,
Gottwald et al. (2002) collected spatio-temporal data
on the locations and disease status of citrus trees in five
residential districts of Florida. A detailed analysis will
appear elsewhere; in this paper, we use the data to
evaluate how effective a strategy of regular monitoring
and removal of symptomatic trees, and potentially non-
symptomatic trees in their vicinity, would have been at
reducing the number of trees infected.

Let the rate of infection of j, a susceptible tree, be

fjðtÞZeC
X
i

bf ðdi;j ;aÞ1fi2IðtÞg1fj2SðtÞg; ð5:1Þ
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where di, j is the distance in kilometres separating trees
i and j and f(d, a) is a dispersal kernel. We use the
exponential kernel f ðd;aÞZexpðKd=aÞ; results are
robust to sensible choices of kernel (not shown). Rates
of host-to-host infection are also governed by b, while e
is the per capita rate of infection from external sources
outwith the study area and potentially from anywhere
within the infected area of the state.

We analyse disease progress maps made at 30 day
intervals over 360 days from 26 October 1997 to 20
October 1998 in a 10.3 km2 area of Miami, Dade county
(site D1 in Gottwald et al. 2002). The trees in the study
area were sampled extensively, yielding a very rich
dataset, with 1124 of 6056 trees becoming infected. See
Gottwald et al. (2002) for a fuller description of the data
collection and some caveats regarding their interpre-
tation. Note that the epidemic was ultimately inter-
rupted by a prolonged period of dry conditions; prior to
that, infected trees were effectively continuously
infectious. During this year, removal efforts focused
on clearing a backlog from elsewhere in the state and so
no trees were removed from the epidemic from the
population in question. We investigate the effect of
notional removal strategies in which, at intervals of D
days, all trees are assessed for infection. Infection is
detected with probability q (including qZ1): trees
found to be infected are removed immediately along
with all other trees within a circle of radius r metres
centred on the infected tree.

In reality, tree disease status was assessed by a team
of phytopathologists (Gottwald et al. 2002). In the
mooted interventions, we allow for the possibility of
non-detection accounting for less formal disease assess-
ment. For the purposes of illustrating the methodology,
here we focus exclusively on a simple criterion for the
effectiveness of intervention: the total number of trees
removed relative to the numbers infected in the historic
epidemic. This does not take account of the force of
infection generated by the population, nor of the costs
of surveying and removing trees.

We used an MCMC routine to sample the posterior
distribution of (a, b, e) (taking uniform priors over the
region of interest) and the infection times
fti : iZ1;.; 1124g. In figure 5, we present mean and
95% credible regions for

P
i1fi2IðtÞgC1fi2RðtÞg

(i.e. the number of trees lost to disease and/or removal)
against time, under three interventions: removals every
60 days (DZ60, qZ1, rZ0), removals every 120 days
(DZ120, qZ1, rZ0) and 40% removals every
120 days (DZ120, pZ0.4, rZ0). In table 2 we present
the ratio of trees lost for these and several other
removal strategies during a 360 day period relative to
the actual number infected during this interval. This
ratio is greater than 1 if pre-emptive removal of
susceptible trees is carried out (rO0); otherwise the
maximum the ratio may take is unity, as all other
intervention strategies lead to a strict non-increase in
the infective pressure on all hosts.

From table 2 it is clear that removal of symptomatic
trees would have substantially reduced the amount of
trees being infected in the study area. Themore frequent
the surveying and removal, the less disease would
have resulted, although losses depend nonlinearly upon
J. R. Soc. Interface (2008)
surveying frequency. These results seem to suggest that
pro-active removal of asymptomatic trees in the
vicinity of a known infective is not an effective strategy,
since it is predicted to increase total losses; indeed, the
broadest removal radius considered by us was predicted
to result in almost all trees being removed. We consider
this ostensible inefficacy to be an artefact of analysing a
non-isolated population. The study area considered
here forms part of a greater population of citrus
statewide (Gottwald et al. 2002) and pro-actively
culling trees only in some areas allows disease to be
reintroduced from elsewhere. However, this and the
other study areas were unusual in that disease was
allowed to increase without intervention by the regulat-
ory agencies specifically so that the epidemic could be
studied to aid the development of intervention
strategies. Within all other locations throughout the
state intense culling of symptomatic and surrounding
trees was practised. From a statewide perspective,
culling is desirable, for although culling results in heavy
to complete losses of tree populations locally, the
practice effectively lowers e at the geographic scale.
6. DISCUSSION

This paper introduced a novel approach to analysing
retrospectively the effects of mooted interventions on
historic epidemics. Coupling epidemics by matching
their latent processes allows us to make full use of both
parametric and trajectory-based information. By so
doing, we avoid paradoxical results that may often
occur when information about the epidemic trajectory
is only partially used; these include predictions of a high
probability of a more severe epidemic occurring with
more effective controls than were used in reality
(figure 4). Our method is easy to implement as part of
a parameter estimation routine using standard MCMC
techniques. The choice of latent process to match is
subjective, but may be guided by desiderata, which the
Sellke construction satisfies.

There is a logical inconsistency in using infor-
mation from the whole of an outbreak to parametrize
the model but only part of the information on the
trajectory of the outbreak: that coming before a
mooted intervention. This inconsistency is most
evident when we wish to assess the effect of an
incremental change to an actual strategy. Our fully
retrospective approach is a natural alternative that
preserves patterns and pathologies in the data. It
preserves patterns wholly when the mooted interven-
tion has effects identical to the actual one, and partly
and decreasingly so when the mooted intervention
changes more and more from the actual one. When the
mooted intervention is drastically different from the
actual one, all trajectory information is lost, and our
approach gives predictions that match those using the
semi-retrospective approach.

The mechanism used to couple epidemics was to
match latent processes that we assume to be unaffected
by control. We did this using the Sellke construction
to transform the effect of one intervention strategy
(including non-intervention) to another. The choice
of matching-process is subjective. Even the semi-
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retrospective approach rests on an assumption: that the
notional invasion trajectory is independent of the
actual one, i.e. that the occurrence of events in
the observed epidemic has no correlation with their
occurrence in the notional outbreak. This is one
extremum of the set of possible assumptions regarding
the relationship between two epidemics. Indeed, any
division of unobservables into ‘parameters’ and ‘out-
comes’ is inherently arbitrary.

The main philosophical issue with any approach to
evaluating the benefits provided by the actual inter-
vention compared with the outcome of an alternative
strategy is that the relationship between a notional
and the actual epidemic can never be verified. This is
not a new issue in modelling: in making any predic-
tions based on a model, we implicitly trust that the
model provides a reasonable description of reality and
may be extrapolated to future or alternative con-
ditions. Indeed, non-verifiability of cause and effect is
an old philosophical issue dating back to Hume. The
theory of causal inference (e.g. Rubin 1974, 2007;
Holland 1986; Cox 1992; Greenland & Brumback
2002) has been developed to overcome (at least
partially) this obstacle and is frequently used in
medicine, the social sciences and econometrics when
randomization of sampling units is not possible. Most
of the causal inference literature focuses on scenarios in
which treatments are applied to a sample of units that
respond independently. Clearly this is inappropriate
J. R. Soc. Interface (2008)
for contagious infections since the infectious status of
individuals in the population are not independent
(Halloran & Struchiner 1995). Our approach differs in
that we are interested in the effect of ‘treatment’ on a
population rather than an individual, and only one
‘treated’ population is observed. We therefore tackled
the problem by using the Sellke construction to
decompose the epidemic into simpler components
and then again to reconstruct the notional outbreak
under a mooted intervention. As in causal inference
(see Cox 1992) the assumptions we make can be
justified from first principles but cannot be indepen-
dently tested.

We have applied the method in two ways. First, we
used temporal data and a simple and accessible
model. Here we made simplifying assumptions,
assuming no latent period (cf. Arruda et al. 1997;
Heikkinen & Järvinen 2003) and homogeneous mixing
(cf. Becker & Hopper 1983) and susceptibility (cf.
Heikkinen & Järvinen 2003), for example. The validity
and tractibility of the method are not, however,
dependent on these simplifying assumptions. To
illustrate the generality of the approach, we also used
a spatio-temporal model to analyse the effect of removal
of trees on an economically important disease of citrus
in Florida.

The most pressing extension of the work is to
incorporate economic factors such as treatment costs,
in order to identify economically optimal strategies

http://rsif.royalsocietypublishing.org/


0

200

400

600

800

1000

1200
(a)

(b)

(c)

(d )

days after 26 Oct 1997

in
fe

ct
ed

 +
 r

em
ov

ed

0 60 120 180 240 300 360

no removals
removals every 60days
removals every 120days
40% removals every 120days

never infected
(infection) > 0.9
(infection) Œ (0.1, 0.9)
(infection) ≤ 0.1

100 m

Figure 5. Retrospective effect of three removal strategies on lost
citrus trees in an area of Florida. In (a), solid lines are posterior
means and dashed lines 95% credible intervals. Points mark the
observed number of infections (there were no removals in
reality). Colours distinguish three notional control strategies:
r01: sample the population every 60 days and remove all infected
trees (corresponding to (b)); r02: sample every 120 days and
remove all infected trees (c); and r03: sample every 120 days but
only detect and remove infection with probability 40% (d ). The
three lower panels show maps of the areas, with coloured
symbols indicating the posterior mean probability that the
corresponding treewouldhavebeen infectedby time360hadthe
intervention taken place (legend in top panel).

Table 2. Posterior effect of various intervention strategies on
the number of trees infected or removed during a period of
360 days. (The removal efficacy is labelled q, the removal
frequency D and the radius of removal r (38.1 mZ125 ft being
the original radius around detected infections used to
determine asymptomatic trees for removal elsewhere in the
state, later extended to 579 mZ1900 ft): if no entry is present
in the r column this indicates only the tree with infection
detected is removed. The mean ratio of notional to actual
losses as well as 95% credible bounds are tabulated.)

q (%) D (days) r (m) mean 95% CI

100 60 0.30 (0.28, 0.32)
120 0.39 (0.35, 0.42)
240 0.49 (0.48, 0.51)

80 60 0.34 (0.31, 0.37)
120 0.49 (0.44, 0.53)
240 0.56 (0.53, 0.59)
60 579 5.34 (5.30, 5.35)
60 50 2.41 (2.27, 2.52)
60 38.1 1.88 (1.77, 1.98)
60 25 1.32 (1.23, 1.40)

120 579 5.34 (5.24, 5.37)
120 50 2.24 (2.08, 2.40)
120 38.1 1.78 (1.64, 1.91)
120 25 1.30 (1.20, 1.39)

60 60 0.42 (0.37, 0.47)
120 0.59 (0.54, 0.64)
240 0.64 (0.61, 0.68)
60 579 5.32 (5.23, 5.35)
60 50 2.36 (2.22, 2.49)
60 38.1 1.87 (1.74, 1.98)
60 25 1.34 (1.24, 1.44)

120 579 5.30 (5.13, 5.37)
120 50 2.11 (1.94, 2.27)
120 38.1 1.69 (1.56, 1.83)
120 25 1.28 (1.18, 1.37)

40 60 0.55 (0.49, 0.60)
120 0.71 (0.66, 0.76)
240 0.75 (0.71, 0.79)
60 579 5.27 (5.11, 5.36)
60 50 2.24 (2.09, 2.38)
60 38.1 1.80 (1.67, 1.92)
60 25 1.34 (1.23, 1.43)

120 579 5.22 (4.95, 5.37)
120 50 1.91 (1.74, 2.06)
120 38.1 1.56 (1.44, 1.68)
120 25 1.23 (1.14, 1.31)
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(Forster & Gilligan 2007). This may be effected within
the current framework by suitably adapting the utility
function. This remains the subject of future work.
J. R. Soc. Interface (2008)
The scope of potential applications is broad. Vital
questions about the effectiveness of varying the timing
and intensity of control may be evaluated in diseases of
humans (e.g. SARS (Riley et al. 2003;Wallinga &
Teunis 2004), Spanish influenza (Chowell et al. 2006a,b)
and Ebola (Lekone & Finkenstädt 2006)) and other
animals (e.g. FMD) as well as plants. We note, in
particular, that a very nice aspect of the approach of
Haydon et al. (2003)—their incorporation of known
infectious contacts—could easily and consistently be
incorporated within our framework also. By using an
appropriate latent process such as the Sellke, our
method also allows assessments to be made of the risk of
inaction following outbreaks in which control measures
were actually deployed. The method described in this

http://rsif.royalsocietypublishing.org/


1212 Alternative intervention strategies A. R. Cook et al.

 rsif.royalsocietypublishing.orgDownloaded from 
paper allows such important issues to be tackled taking
full account of all available sources of information.

The data and CCC routines used in the common cold
example are also available in the electronic supplementary
material.
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